SMD215

Low Quiescent Current, PFM/PWM Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option

General Description

The SMD215 is a compact, high-efficiency, fixed frequency, synchronous step-up DC-DC converter. This family of devices provides an easy-to-use power supply solution for applications powered by either one-cell, two-cell or three-cell alkaline, NiCd, NiMH, one-cell Li-Ion or Li-Polymer batteries. A low-voltage technology allows the regulator to start up without high inrush current or output voltage overshoot from a low voltage input. High efficiency is accomplished by integrating the low-resistance N-Channel boost switch and synchronous P-Channel switch. All compensation and protection circuitry are integrated to minimize external components. SMD215 operates and consumes less than 14 µA from battery, while operating at no load $(V_{OUT} = 3.3V, V_{IN} = 1.5V)$. The devices provide a true disconnect from input to output (SMD215AE) or an input-to-output bypass (SMD215BE), while in shutdown (EN = GND). Both options consume less than 0.6µA from battery. Output voltage is set by a small external resistor divider.

Applications

- One, Two and Three Cell Alkaline and NiMH/NiCd Portable Products
- Solar Cell Applications
- Personal Care and Medical Products
- Bias for Status LEDs
- Smartphones, MP3 Players, Digital Cameras
- Remote controllers, Portable Instruments
- Wireless Sensors
- Bluetooth Headsets
- +3.3V to +5.0V Distributed Power Supply

Features

- Up to 96% Typical Efficiency
- 1.0A Typical Peak Input Current Limit:
 -Iout > 200mA @ 3.3V Vout, 1.2V VIN
 -Iout > 400mA @ 3.3V Vout, 2.4V VIN
 -Iout > 400mA @ 5.0V Vout, 3.3V VIN
- Low Device Quiescent Current:
 -Output Quiescent Current: < 4µA typical, device is not switching (V_{OUT} > V_{IN}, excluding feedback divider current)
 -Input Sleep Current: 1µA
 -No Load Input Current: 14µA typical
- Shutdown Current: 0.6µA typical
- Low Start-up Voltage: 0.82V, 1mA load
- Low Operating Input Voltage: down to 0.65V
- Adjustable Output Voltage Range: 2.2V to 5.5V
- Maximum Input Voltage ≤ Vout < 5.5V
- Automatic PFM/PWM Operation:
 -PWM Operation: 500KHz
 -PFM Output Ripple: 150mV typical
- Feedback voltage: 1.215V
- Internal Synchronous Rectifier
- Internal Compensation
- Inrush Current Limiting and Internal Soft Start (1ms typical)
- Selectable, Logic Controlled, Shutdown States:
 -True Load Disconnect Option (SMD215AE)
 -Input to Output Bypass Option (SMD215BE)
- Anti-Ringing Control
- Over temperature Protection
- Output Short Protection
- Available Packages:
 -SOT-23-6

PIN CONFIGURATION

SMD215(1)2

DESIGNATOR	SYMBOL	DESCRIPTION		
	А	Disconnect option		
(I)	В	Bypass option		
2	E/ER	Package: SOT-23-6		

PIN	NO.	PIN NAME	FUNCTION			
Е	ER		Function			
1	1	SW	Switch Node, Boost Inductor Input Pin			
2	2	GND	Ground Pin			
3	4	V _{FB}	Feedback Voltage Pin			
4	3	EN	Enable Control Input Pin			
5	5	Vout	Output Voltage Pin			
6	6	V _{IN}	Input Voltage Pin			

ABSOLUTE MAXIMUM RATINGS

(T_A = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNITS	
Input Voltage	VIN	-0.3 ~ 6	V	
SW Voltage		-0.3 ~ 6	V	
CE, FB Voltage		-0.3 ~ 6	V	
Output Voltage	Vout	-0.3 ~ 6	V	
Output Current Bypass Mode		1000	mA	
Power dissipation	PD	Internally Limited	mW	
Ambient Temp. with Power Applied	T _{opr}	-40 ~ +85	°C	
Storage Temperature Range	T _{stg}	-55 ~ +150	°C	
Lead Temperature (Soldering,10 sec)	T _{solder}	260	°C	
ESD roting	Human Body Model-(HBM)	≥ 2	KV	
ESD rating	Machine Model-(MM)	≥ 200	V	

Note: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Typical Application

ELECTRICAL CHARACTERISTICS

(Unless otherwise indicated, $V_{IN} = 1.5V$, $C_{OUT} = C_{IN} = 10\mu$ F, $L = 4.7\mu$ H, $V_{OUT} = 3.3V$, $I_{OUT} = 0$ mA, $T_A = +25^{\circ}$ C. Boldface specifications apply over the T_A range of -40°C to +85°C.)

Parameters	Sym	Min	Тур	Мах	Units	Conditions
Minimum Start-Up Voltage	VIN	_	0.82	—	V	Note1
Minimum Input Voltage After Start-Up	Vin	—	0.65	—	V	Note1
Input Voltage range	Vin	0.82		5.5	V	
Output Voltage Adjust Range	Vout	2.2		5.5	V	V _{OUT} ≥ V _{IN} ; Note2
			200	—		1.2V VIN, 3.3V VOUT
Maximum Output Current	I _{OUT}		400	—	mA	2.4V V _{IN} , 3.3V V _{OUT}
			400	—		3.3V VIN, 5.0V VOUT
Feedback Voltage	VFB	1.179	1.215	1.251	V	
Feedback Input Bias Current	I _{VFB}	_	10	_	nA	
V _{OUT} Quiescent Current	Ι _{QOUT}	_	4.0	8	μΑ	$I_{OUT} = 0$ mA, device is not switching, EN = V _{IN} = 4.0V, V _{OUT} = 5.0V, does not include feedback divider current; Note3
VIN Sleep Current	Iqin	_	1.0	2.3	μA	I _{OUT} = 0mA, EN = V _{IN} Note3, Note5
No Load Input Current	I _{IN0}	—	14	25	μΑ	I _{OUT} = 0mA, device is switching
Quiescent Current – Shutdown	IQSHDN	_	0.6	_	μΑ	V _{OUT} = EN = GND; includes N-Channel and P-Channel Switch Leakage

Note :

- 1. $3.3k\Omega$ resistive load, $3.3V_{OUT}$ (1mA).
- 2. For $V_{IN} > V_{OUT}$, V_{OUT} will not remain in regulation.
- IQOUT is measured at VOUT, VOUT is external supplied for VOUT > VIN (device is not switching), IQIN is measured at VIN pin during Sleep period, no load.
- 4. 220 Ω resistive load, 3.3V_{OUT} (15mA).
- 5. Determined by characterization, not production tested.

ELECTRICAL CHARACTERISTICS (CONTINUED)

(Unless otherwise indicated, $V_{IN} = 1.5V$, $C_{OUT} = C_{IN} = 10\mu$ F, $L = 4.7\mu$ H, $V_{OUT} = 3.3V$, $I_{OUT} = 0$ mA, $T_A = +25^{\circ}$ C. Boldface specifications apply over the T_A range of -40°C to +85°C.)

Parameters	Sym	Min	Тур	Max	Units	Conditions
NMOS Switch Leakage	Inlk	—	0.15	—	μA	
PMOS Switch Leakage	IPLK	_	0.15	—	μΑ	$V_{IN} = V_{SW} = GND;$ $V_{OUT} = 5.5V$
NMOS Switch ON Resistance	Rds(on)n	_	0.25	_	Ω	$V_{\text{IN}} = 3.3 \text{V}, \text{ I}_{\text{SW}} = 100 \text{mA}$
PMOS Switch ON Resistance	Rds(on)p	_	0.5	_	Ω	$V_{\text{IN}}=3.3V,I_{\text{SW}}=100\text{mA}$
NMOS Peak Switch Current Limit	In(max)	_	1	_	A	Note5
Vout Accuracy	Vout%	-3	_	+3	%	Includes Line and Load Regulation; V _{IN} = 1.5V
Line Regulation	(ΔV _{OUT} /V _{OUT}) /ΔVin	-0.4	0.3	0.4	%/V	$V_{IN} = 1.5V$ to 2.8V $I_{OUT} = 50mA$
Load Regulation	ΔVουτ/Vουτ	-1.5	0.1	1.5	%	$I_{OUT} = 25mA$ to 100mA; $V_{IN} = 1.5V$
Maximum Duty Cycle	DCмах	87	89	91	%	Note5
Switching Frequency	fsw		500		KHz	
EN Input Logic High	VIH	70		_	% of V_{IN}	Iout = 1mA
EN Input Logic Low	VIL	—		20	% of V_{IN}	louτ = 1mA
EN Input Leakage Current	IENLK	—	5.0	—	nA	$V_{EN} = 5V$
Soft Start Time	tss	_	1		ms	EN Low to High, 90% of Vour; Note4, Note5
Thermal Shutdown Die Temperature	T _{SD}	_	160	_	°C	$I_{OUT} = 20mA, V_{IN} > 1.4V$
Die Temperature Hysteresis	T _{SDHYS}	_	20	_	°C	

Note :

- **1.** $3.3k\Omega$ resistive load, $3.3V_{OUT}$ (1mA).
- **2.** For $V_{IN} > V_{OUT}$, V_{OUT} will not remain in regulation.
- 3. I_{QOUT} is measured at V_{OUT} , V_{OUT} is external supplied for $V_{OUT} > V_{IN}$ (device is not switching), I_{QIN} is measured at V_{IN} pin during Sleep period, no load.
- 4. 220 Ω resistive load, 3.3V_{OUT} (15mA).
- 5. Determined by characterization, not production tested.

Functional Description

SMD215 Block Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

(T_A = 25 $^{\circ}$ C, unless otherwise specified)

PACKAGING INFORMATION

• SOT-23-6 Package Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0 °	8 °	0°	8 °	

© SMTES TECHNOLOGY PTE. LTD.

SMTES cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a SMTES product. No circuit patent license, copyrights or other intellectual property rights are implied. SMTES reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

